Viscosity measurements of minute volumes of the insect pad secretion via dewetting

D-M. Kaimaki, M. N. Stoukidi, A. E. L. Attipoe, D. Labonte
Department of Bioengineering, Imperial College London

Many insects stick to surfaces using footpads which leave minuscule amounts of a liquid behind.

Experimental design:
- inverted microscope & custom-built temperature controller to record dewetting at various temperatures

Question:
What is the functional significance of the pad secretion?

Hypothesis:
The secretion may aid attachment via viscosity & capillarity.

Challenge:
How can its physical properties be determined given there is so little of it?

Solution:
Dewetting, i.e. spontaneous rupture of liquid film, allows for viscosity measurements of minute liquid volumes.

$\eta(T) \propto \gamma \nu(T)$

Dewetting speed, $\nu(T)$: a competition between surface tension, γ, which tends to minimize the liquid's surface area & viscosity, η, which resists flow.

η_a is the viscosity at ambient temperature (20°C)

OUTLOOK

SURFACE EFFECT
Investigate dewetting on surfaces with various surface energies to enable measurements of large contact angles

ACCLIMATION ASSUMPTION
Test adjustment of secretion's chemical composition & hence viscosity, in insects living in high temperature environments.

"WET" ADHESION MODEL
Adhesion & friction \propto viscosity

Quantify temperature-induced changes in frictional & adhesive forces & compare with temperature-dependence of the pad secretion's viscosity.